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A new method for numerically solving integral equations is presented. Several
examples are shown to demonstrate the accuracy of the procedure. Using the pro-
cedure, one can in principle solve any properly constructed integral equation for
solutions in the analytic domain.c© 1998 Academic Press

1. INTRODUCTION

A new procedure now exists for numerically solving integral equations. It works by
transforming each equation system into an equivalent one of mathematically linked Taylor
series coefficients. The procedure is viable because, using it, one can in principle solve any
properly posed integral equation system (for solutions in the analytic domain, only). Also,
it produces numerical results that are in some cases more accurate than from many other
techniques. The procedure can be implemented using software that operates similar to a
modern spreadsheet.

Strictly speaking, using Taylor series expansions to solve integral or differential equations
is not new. Today, however, they are rarely used as the sole or primary solution vehicle,
because of inherent difficulties involving these expansions. For example, in general they
have poor radius of convergence qualities. To get a sizeable radius, suitable for solving
most physical problems of interest, each expansion usually requires a large number of terms.
Constructing them is most often time consuming and usually error prone, because it requires
continuous partial differentiation. Finally, storing and manipulating large expansions in a
solution algorithm is often technically challenging.

In contrast, our procedure does not simply or exclusively use Taylor expansions. Instead,
it uses Taylor series components and in a specialized and adapted way. It is this specia-
lized adaptation that is new. It allows us to overcome the difficulties associated with Taylor
expansions.
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This paper is divided into four sections. In Section 2 we describe the integral solution
procedure in some detail, using illustrative examples and equations. We illustrate how it
bypasses the well-known problems of Taylor expansions. Next, in Section 3 we demonstrate
the significant solution capabilities of our procedure. We calculate numerical solutions for
several problems previously studied by others. In comparing our results to the prior studies,
in general, our solutions are more accurate. This fact, perhaps more than anything else,
proves the unique capabilities of the procedure, in spite of its foundation based on Taylor
series components. In Section 4 we summarize our conclusions and provide suggestions
for future developments.

One final point: we use a commercially available spreadsheet to solve the problems
presented in this paper, and that may seem to be unusual. Although not optimized for the
task, the spreadsheet is nevertheless effective. It very quickly and conveniently demonstrates
the capabilities and features of our procedure.

2. DESCRIPTION OF THE INTEGRAL EQUATION SOLUTION PROCEDURE

Our procedure solves a system of integral equations by constructing a set of mathemati-
cally linked Taylor series coefficients for all the functions that are involved in the equation
system. Mathematically, it is equivalent to reconstructing each equation system into an iso-
morphic set of Taylor series coefficient functions (the coefficients automatically update to
new values as different expansion points are selected). Reconstruction is possible because
an isomorphism exists between any set of analytic functions and their corresponding set of
Taylor coefficients, with the coefficients all evaluated at the same point. Stated differently,
for each operation that can be performed on a given set of analytic functions, an equivalent
operation exists for the corresponding set of Taylor coefficients all evaluated at the same
point. Therefore, operations of addition, subtraction, multiplication, division, square root,
matrix inverse, partial differentiation, and partial integration, among others, are defined
for Taylor coefficients. Using these operations, one can reconstruct any integral equation,
involving analytic functions only, strictly in terms of interacting Taylor coefficients. In this
paper we will refer to the isomorphic operations involving Taylor coefficients as “Taylor
addition,” “Taylor multiplication,” “Taylor differentiation,” etc.

We can easily illustrate the isomorphic operations for Taylor series coefficients by refer-
ring to functions of a single variable. For example, letf, g, andh be three functions ofx
such that

f = f (x) = Fi (x − x O)i (1)

g = g(x) = G j (x − x O) j (2)

h = h(x) = Hk(x − x O)k. (3)

All three functions are analytic at some pointx= x O. Fi ,Gj , andHk are the Taylor coeffi-
cients of f, g, andh, respectively, evaluated atx O. Above, we adopt the Einstein conven-
tion of using a repeated index to indicate a summation over that index. Assume now that
f, g, andh are related through multiplication. Specifically, let

f g = h. (4)

If so, the three sets of Taylor coefficients are related by Taylor multiplication. That is, by
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substituting (1), (2), and (3) into (4), performing the multiplication, and then equating the
coefficients of the same powers of(x − x O) on both sides of the equation, we must have

Hi =
j+k=i∑
all j ,k

Fj Gk. (5)

Above, the summation is over allj, k such thatj + k = i . Assuming (1) through (3) are
true, (5) is true if and only if (4) is true. In other words, (5) defines Taylor multiplication for
functions of a single variable. For functions of four variables Taylor multiplication becomes

Habcd=
i+n=a∑
all i ,n

[
· · · ,

[
· · · ,

[
m+q=d∑
all m,q

Fi jkmGnopq

]]]
. (6)

Next, Taylor division can be defined, using multiplication and the multiplicative inverse.
Staying with functions of a single variable, let

j = j (x) = Jk(x − x O)k (7)

be the multiplicative inverse off . If so, we then have

f j = j f = f/ f = f (1/ f ) = 1. (8)

Equation (8) defines the multiplicative inverse function,j = j (x) = 1/ f . Assuming that
(1) and (7) are true, and thatf does not vanish atx O, then (8) is true if and only if

J0 = 1/F0; Jn = −
(

J0Fn +
k+m=n∑

all k,m>0

Jk Fm

)/
F0; all n > 0. (9)

Equation (9) defines Taylor division (Taylor multiplicative inverse) for single variable func-
tions. The equation forJ0 simply states that the first Taylor coefficient forf j equals 1.
The equation forJn, n > 0, states that the all the remaining Taylor coefficients in (8) are
identically zero. Equation (9) is a recursion formula, because it definesJn in terms ofJm,
for eachn > m. The spreadsheet handles recursion formulas extremely well. Note that if
f vanishes atx O, (8) cannot be analytically satisfied there, and the Taylor coefficients for
j = 1/ f do not exist atx O.

Next, lets= s(x) equal the square root off . Therefore:

s = s(x) = Si (x − x O)i (10)

s2 = [s(x)]2 = f = f (x). (11)

We can write a recursion equation forSi by first substitutingFi for Hi on the left hand side
of (5), andSj andSk for Fj andGk, respectively, on the right hand side. Then, solving for
Si and assuming thatf does not vanish atx O, we obtain

S0 = ±
√

F0; Sn =
[

Fn −
k+m=n∑

all k,m>0

SkSm

]/
(2 ∗ S0); n > 0. (12)
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If F0= 0, we can still write a formula for the Taylor square root. The procedure is the
same as the one identified above, except that we have to use the first non-vanishing Taylor
coefficient in thef = f (x) expansion. Note that ifF0 = 0, the second coefficient,F1, must
also vanish (otherwise,f does not possess a real valued square root function atx O).

Next, letd = d(x) equal the derivative off . Therefore

d = d(x) = d f/dx = Di (x − x O)i . (13)

Obviously

Di = (i + 1) ∗ Fi+1; i ≥ 0. (14)

For functions of two or more variables (14) generalizes to a Taylor partial derivative. For
example, with four variables and differentiating on the second one,

Di jkm = ( j + 1) ∗ Fi ( j+1)km; j ≥ 0. (15)

Next, leti = i (x) equal the integral off = f (x). Therefore

i = i (x) =
∫ x

x O
f (z) dz+ C = I j (x − x O) j (16)

I0 = C; I j = Fj−1/j ; j > 0. (17)

Equation (17) defines Taylor integration for functions of a single variable.I0 = C is the
constant of integration. In our procedure we refer to it as a primary Taylor coefficient. For
functions of four variables with integration on the third one, (17) generalizes to

I jk0n = Cjk0n; I jkmn = Fjk(m−1)n/m; m> 0. (18)

Again theI jk0n are primary Taylor coefficients.
One or more primary coefficients occur each time we perform Taylor integration. Suppose

we are integrating anNth order differential system. If so, primary coefficients will occur
in the solution functions and their various derivatives of order(N − 1) or less. As shown
above, they correspond to Taylor expansion terms that are independent of the integration
variable. Primary coefficients are usually determined by initial and/or boundary conditions.
For convenience we refer to all other, non-primary coefficients within the solution algorithm
as secondary coefficients.

Some of the above equations are not new. All of them, however, are based on our ability
to perform term-by-term mathematical operations, such as addition, multiplication, and
differentiation, on any Taylor series. The theoretical basis for these operations is well
known. Several standard texts, including [1], provide the mathematical justification. Also,
the power series solution method, which is well known, uses some of these operations to
solve many types of ordinary differential equations (ODEs). In our procedure, however,
we take it several steps further. For example, the power series method does not routinely
include divisions or square roots. Those operations are usually too complicated, because of
the way that method is implemented. As a result of this and other implementation issues,
the power series method is usually restricted to fairly simple ODE problems. In contrast,
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with our procedure we can solve a much wider range of problems, including systems of
nonlinear partial differential equations.

To provide for that capability, our procedure also includes the ability to create Taylor
coefficients for several analytical functions, such as natural logarithms, exponents, sines,
and cosines. For example, letl = l (x) equal the natural logarithm off :

l = l (x) = ln( f ) = ln( f (x)) = Li (x − x O)i . (19)

TheLi are the coefficients for the Taylor expansion, where the expansion point isx O ( f (x) >
0). Therefore:L0 = ln( f (x O)). We create the remaining coefficients,L j ( j > 0), by con-
structing coefficients for the function,(d f/dx)/ f . We do that by creating the coefficients for
f andd f/dx separately, and then performing the indicated Taylor division. That is, instead
of dividing d f/dx by f , we perform the coefficient space equivalent operation of Taylor
dividing the coefficients ofd f/dx by the coefficients off . Specifically, using (9), we con-
struct the coefficients for the multiplicative inverse function, 1/ f . Then, we Taylor multiply
the coefficients ofd f/dx and 1/ f , using (5). Note that we create the coefficients ofd f/dx
as the Taylor derivative of thef coefficients. LetCi be the coefficients for(d f/dx)/ f ,
constructed as stated above, wherei = 0, 1, 2, . . . ,. If so,Ci andL j are related as

L j = (( j − 1)!/j !) ∗ C( j−1) = C( j−1)/j ; j = 1, 2, . . . . (20)

The factorial factors adjust for the 1/( j − 1)! factor contained inC( j−1), versus the 1/j !
factor required inL j . If f is a function of several variables,x, y, z, andt , for example,
we modify the above procedure to include the coefficients from all of the first order partial
derivative functions,(∂ f/∂x)/ f, (∂ f/∂y)/ f, (∂ f/∂z)/ f , and (∂ f/∂t)/ f . Then, when we
construct the remaining Taylor coefficients for the logarithm (the ones that follow the first
one), we must not double, triple, or quadruple the various terms in each coefficient. Since
differentiation is independent of the order of the derivatives, that will happen, if we simply
add together various coefficient terms from the four first order derivatives. Correctly adding
the terms, for functions of four variables, (20) becomes

Li jkm =
{

1C(i−1) jkm/ i + 2Ci ( j−1)km/j + 3Ci j (k−1)m/k+ 4Ci jk (m−1)/m
}/

N. (21)

Above, the1C(i−1) jkm are the Taylor coefficients from(∂ f/∂x)/ f , the 2Ci ( j−1)km are the
Taylor coefficients from(∂ f/∂y)/ f , etc. Also,1C(i−1) jkm = 0, if (i −1) < 0; 2Ci ( j−1)km =
0, if ( j − 1) < 0; etc. Finally,N = 4, if none of the four Taylor coefficients,1C(i−1) jkm,

2Ci ( j−1)km, etc., equals zero.N = 3, if exactly one of the four coefficients equals zero, etc.
At least one of the four coefficients must always be nonzero, since we are creating logarithm
coefficients that follow after the first one,L0000(= ln( f (x O, yO, zO, t O))).

In a similar fashion we can construct coefficients foref (x), sin( f (x)), and cos( f (x)). To
save space we will not provide the details here.

For convenience we refer to each Taylor coefficient as having a levelN, whereN = 0,
1, 2, . . . , . The level is equal to the sum of the exponents that act on the independent
variables, when we look at the one and only term within the expansion from which that
coefficient came. For example, the coefficient,Fi j , is associated with a function of two
independent variables and has a level equal toi + j .
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At this point we can transfer the above mathematics to a spreadsheet. It is the spreadsheet
that makes it all practical for solving differential or integral equations. To see how that
works, suppose we have the differential equation,

0= d2u/dx2− (du/dx)/x − 8 ∗ x2 ∗ u3, (22)

with initial conditionsu(0) = 1 anddu(0)/dx = u, x(0) = 0. Even though (22) is an
ODE, it is still somewhat challenging. Using it as an illustrative example, we can demon-
strate the major features of our procedure. Note that the exact solution isu = 1/(1+ x2).
Also, the Taylor expansion of the solution atx = 0 has a radius of convergence of only 1.

To solve any differential system we must first convert it to an equivalent integral equation
system. Usually there are several ways that can be done. In Eq. (22), we could solve for
du/dx = u, x and integrate once. Or, trivially, we could solve foru and integrate zero
times. For reasons that we will discuss later, neither of those approaches will work here.
Therefore instead, we solve for the highest order derivative,d2u/dx2 = u, xx, and then
integrate twice. We obtain

u =
∫ x

x O

(∫ y

yO
((u, z)/z+ 8 ∗ z2 ∗ u3) dz

)
dy+ C1(x − x O)+ C0. (23)

C0 andC1 are the integration constants. For our specific initial value problem, they equal
1 and 0, respectively (and,x O = 0). For the moment we will keepC0 andC1 arbitrary so
that (23) remains as the general solution to (22). By direct differentiation one can verify
that (23) satisfies (22) identically.

Next, we reconstruct (23) on a spreadsheet, substituting the isomorphic Taylor equivalents
for the functions and function-based operations shown in the equation. We use (5), (9), (14),
and (17) to construct the Taylor equivalents. Figure 1 illustrates how it is done. In the figure
the row numbers for the spreadsheet cells are shown at the far left, starting with row 1
at the top and reading down. The column IDs are shown at the top of the figure, starting
with the wide column A on the far left and reading from left to right to the less wide
columns B, C, D, etc. The value of the expansion point coordinate,x O, is in cell B7.
The value of the increment,dx, used for calculating Taylor partial sums, is in cell C7.
The Taylor coefficients for the various functions involved in the solution are in rows 11
through 23, starting in column B and proceeding to the right for columns C, D, E, etc.
Cells A11 through A23 identify the particular functions for which the Taylor coefficients
are calculated. Row 1 identifies the values of the exponent on(x− x O) for each coefficient
in the Taylor expansion of each function. For example,u(x) has a Taylor expansion term of
−0.019996∗ (x− 0.01)1, because cell C11 has the value of−0.019996, cell A11 identifies
the associated analytic function asu(x), cell B7 identifies the expansion point as 0.01, and
cell C1 identifies the exponent on(x − x O) = (x − 0.01) as 1. Similarly,u, x = ∂u/∂x
has a Taylor series term of+0.11994∗ (x − 0.01)2, because cell D12 has the value of
+0.11994, cell A12 identifies the function asu, x, etc.

Using Taylor operations, we create all of the necessary coefficients to reconstruct (23). By
surveying column A, we can match the coefficients of the various stated functions against
the actual functions contained in (23), or the functions required to construct it. For example,
in row 12 we have Taylor coefficients foru, x, constructed by Taylor differentiation of
theu coefficients in row 11. In keeping with this example, letUi andU X j be the Taylor
coefficients foru andu, x, respectively;i, j = 0, 1, . . . . Selecting cell D12 at random,
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FIG. 1. Portion of solution spreadsheet for 0= u, x, x − (u, x)/x − 8 ∗ x2 ∗ u3 illustrative example.

this cell contains the value of theU X2 coefficient, because cell D1 has the value of 2. As
a result cell D12 must have the formula= 3∗E11. That is, using (14), which is Taylor
differentiation, cell D12 must have a formula equivalent to the equationU X2 = 3∗U3.
Cell E11 contains the value of theU3 coefficient, because cell E1 has the value of 3. Hence,
the formula=3∗E11 in cell D12.

In a similar fashion every other row contains the coefficients for the function indicated
in column A of that row. Except for row 14, the coefficients in each row are obtained by
applying the appropriate Taylor operation to the coefficients in other rows. Specifically, row
13 is the Taylor derivative of row 12. Row 14 has the Taylor coefficients forf (x) = x,
evaluated atx O. Row 15 is the Taylor multiplicative inverse of row 14 (supplying the
coefficients forj (x) = 1/x, evaluated atx O). Row 16 is the Taylor multiplication of row
14 with row 14 (coefficients forx2). Row 17 is the Taylor multiplication of row 11 with row
11 (coefficients foru2). Row 18 is the Taylor multiplication of rows 11 and 17 (coefficients
for u3). Row 19 is the Taylor multiplication of rows 12 and 15 (coefficients for(u, x)/x).
Row 20 is the Taylor multiplication of rows 16 and 18 (coefficients forx2 ∗ u3). Row 21
equals row 19 plus 8 times row 20, (thus obtaining coefficients for(u, x)/x + 8∗ x2 ∗ u3,
fully equivalent to solving (22) foru, x, x). Row 22 is the Taylor integral of row 21 (obtaining
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the coefficients foru, x through Taylor integration). Row 23 is the Taylor integral of row
22 (the coefficients foru). Finally, we complete the reconstruction of (23) by equating row
11 to row 23. That is, we put the “equal sign” in the equation. The completed spreadsheet
has Taylor coefficients to level 8 for the solution function,u = u(x). Eight levels is only a
modest number of coefficients.

Note that rows 18 and 20 both contain formulas for Taylor multiplication. Therefore,
we could have created the formulas in row 20 by copying from row 18, and, using the
spreadsheet’s “Find and Replace” utility, change the row numbers to 16 and 18 in all the
copied formulas. The resulting formulas, now edited, would be correct for row 20, because
this row is the Taylor multiplication of rows 16 and 18. The “Find and Replace” utility is
very fast. We can use it to edit any Taylor formula for specific use. Therefore, once we create
a formula, we can place it in a spreadsheet library for use in solving other differential or
integral problems. It in fact becomes a generic formula for that particular Taylor operation.
The only requirement for successful use is that we keep the same arrangement of the Taylor
coefficients on all the spreadsheets. Of course, we need a separate set of generic formulas
for each different dimension of the independent variable space.

Continuing with the spreadsheet, cells B22 and B23 contain the values of the primary
coefficients. The value in cell B22 must equalC1 from (23), while the value in cell B23
must equalC0.

By examining the spreadsheet and the formulas on it, one can demonstrate that the Taylor
coefficients have the following properties:

(1) The secondary coefficients are functions of only the primary coefficients and the
expansion point coordinates. Therefore, once the expansion point and the primary coeffi-
cients are specified, all of the Taylor coefficients are then known at that particular point.

(2) When considered as a whole, the coefficients of any levelM are all independent
of coefficients from any levelN, whereN > M .

(3) Neglecting truncation and rounding errors, all the Taylor coefficients have exact
values, for a particular solution at a particular expansion point, if and only if the primary
coefficient values are exact for that solution at that point.

Item (2), above, is of particular importance. It means that all of the coefficients are
interconnected and form a complete system of recursion formulas. That is critical because
we are creating formulas only up to some finite maximum levelM . Therefore because of
item (2), we do not have the situation where some of our coefficients are dependent on
other coefficients from a levelN, whereN > M . If that were to happen, those coefficients
would have inaccurate values, because we stopped at levelM . For our particular differential
problem item (2) would not be true, if we attempted to solve (22) foru, x (or u), and then
integrate once (or zero times). For example, if we had solved foru, x, (23) would have
become

u =
∫ x

x O
(z ∗ u, z, z− 8 ∗ z3 ∗ u3) dz+ C0. (24)

The first term under the integral sign causes the problem. From the point of view of Taylor
coefficients, (24) states that the levelM (the maximum level) coefficient ofu is dependent
on the levelM coefficient of the integral ofz ∗ u, z, z. Taylor multiplication causes no
problem, but Taylor differentiation and integration potentially do. For each integration a
Taylor coefficient increases in level by 1. For each differentiation a coefficient decreases in
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level by 1. Therefore, the levelM coefficient of the integral ofz ∗ u, z, z is dependent on
the level(M − 1) coefficients ofx andu, x, x. The level(M − 1) coefficient ofu, x, x,
however, is dependent on the level(M + 1) coefficient ofu, which we did not construct.

For item (2) to remain true, we require the following integration rule for any system of
integral equations:

The integrand of any integral cannot directly contain derivatives of the solution
functions that are of higher order than the number of multiplies of which that
integral is a part.

If, for example,v = v(x, y) is the solution for a particular problem, the multiple integral,

∫
∂v/∂x

[ ∫
(∂2v/∂x ∂y) dx

]
dy,

satisfies the rule. Conversely, the multiple integral,

∫
∂2v/∂x ∂y

[ ∫
(∂v/∂x) dx

]
dy,

does not, since the outermost integral is in essence a single integral, yet it contains the
second order derivative,∂2v/∂x∂y, directly within its integrand. Complex arrangements
can occur within a given system of integral and/or differential equations. Our integra-
tion rule applies to all such situations. We assume that we can always integrate any
differential system to satisfy the rule. Conversely, if an integral system does not sat-
isfy it, we assume that we can differentiate, manipulate the terms, and then integrate to
satisfy.

Next, Fig. 2 helps to illustrate items (1) and (3). In the figure we randomly set the expansion
point and the primary coefficients asx O= 1, u(x O)= 5, andu, x(x O)= 3 (cells B7, B23,
and B22, respectively). Note the values of all the other derivatives ofu, u, x andu, x, x. One
can easily verify the accuracy of all the values by repeatedly differentiating (23) (or, (22)) as
many times as required, thus generating a series of recursion formulas, and then substituting
in the values of the expansion point and previously obtained derivatives, beginning with the
given values ofu(x O) andu, x(x O).

Finally, we can demonstrate the ability of our procedure to calculate accurate solutions at
considerable distances from the initial condition expansion point. To do that we use a new
technique, called “expansion point propagation.” Figures 3–5 help illustrate the method. In
Fig. 3 we begin at a starting expansion point with starting values foru andu, x. Normally,
we use the given initial condition values for the start conditions. For our particular problem,
however, the second order equation, (22), contains the function, 1/x, which is unbounded at
the initial expansion point,x O= 0. Fortunately, this function multipliesu, x, which vanishes
atx O= 0. Therefore, we can start fairly close to the initial values without too much trouble.
In Fig. 3, we chose the exact solution,x O= 0.01, u(0.01)= 1/(1+ 0.012)≈ 0.99990001
andu, x(0.01)= −0.02/(1+0.012)2≈ −0.019996001, as the start values. Cells B7, B23,
and B22 respectively contain these numbers. Because we started with exact values, Fig. 3
shows the exact values of all the Taylor coefficients at the selected start pointx O= 0.01.
That is true because of items (1) and (3), above.
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FIG. 2. Spreadsheet for 0= u, x, x − (u, x)/x − 8 ∗ x2 ∗ u3 with x O = 1, u(x O) = 5, u, x(x O) = 3.

Next, note that cells B25 and B26 respectively contain the formulas

= B22+ C22∗ dx+ D22∗ dx2+ · · · ,+ I22 ∗ dx7 (25)

= B23+ C23∗ dx+ D23∗ dx2+ · · · ,+ J23∗ dx8. (26)

That is, they contain formulas for the Taylor partial sum calculation ofu, x, andu, evaluated
at a pointdx away fromx O = 0.01. As shown in the figure, we chosedx = 0.01 (cell C7).
Therefore, cells B25 and B26 respectively contain the estimate foru, x(0.02) andu(0.02).
Assume for the moment that these are exact values and not approximate. If so, let us replace
the values in cells B22 and B23 with the values from cells B25 and B26, respectively, and
also change the value ofx O to 0.02 in cell B7. Figure 4 shows those replacements. Then, in
keeping with our assumption and again using items (1) and (3), Fig. 4 also shows the exact
values of all the Taylor coefficients, now evaluated at the new expansion point,x O = 0.02.
That is, we have propagated the exact solution from the starting expansion point, 0.01, to
the new one at 0.02. That is what Figs. 3 and 4 show, assuming in Fig. 3 that cells B25 and
B26 contain exact values.

We know, however, that Taylor partials sums are usually approximate and they are in this
case. As a result, the coefficient values in Fig. 4 are also approximate and not exact. Look,
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FIG. 3. Propagation spreadsheet at start expansion point,x O = 0.01.

however, at cell C34 in Fig. 4. This cell contains the difference between the exact solution
at x O = 0.02 (cell C29) and the approximate one, obtained from the Taylor partial sum
from cell B26 in Fig. 3. The approximate solution is in fact very accurate; the error is only
of order 10−14. Therefore, we can repeat the propagation procedure several times without
accumulating significant error. In fact, we can repeat it at least 253 more times, propagating
the expansion point fromx O = 0.02 to x O = 2.55. Figure 5 shows those results. In
the figure the first five columns, starting from the left, show the calculations for values of
x O between 0.01 and 0.04 (rows 28, 29, 33, and 34 on the spreadsheet). Conversely, the
last column on the right, column IV, gives the results atx O = 2.55. The maximum error,
shown in row 34, occurs atx O = 2.55 and is of order 10−11. Therefore, we have generated
accurate solution values far beyond the initial radius of convergence of 1. We used a macro,
a spreadsheet user written program, to automate the task of replacing values in cells B22,
B23, and B7.

Figure 5 also shows the results obtained by the usual and well-known method of Taylor
partial sum expansions, where the expansion point remained fixed atx O = 0.01 (no propa-
gation). The calculated values and corresponding errors are in rows 30 and 31, respectively.
The errors are very large at and nearx O = 2.55. These large errors occur because the Taylor
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FIG. 4. Propagation spreadsheet at next expansion point,x O = 0.02.

partial sum in (26) contains terms only up to level 8. For accurate results many more terms
are needed as the distance from the expansion point increases. For this problem note that
the radius of convergence equals 1 only if the expansion point isx O = 0; at all other points
the radius is infinite. In summary, the propagation method produced substantial increases
in solution accuracy over the desired range ofx.

Based on limited research, however, propagation does not always work exactly as shown
above. For some problems it requires adaptive step sizes (dx in the above illustration) for
portions of the solution where the rates of change are large. For other problems we were
not able to use the technique to calculate accurate solutions over the entire desired range of
the variables. In several of those cases, however, we successfully used the non-propagation
method. In order for that to work the radius of convergence has to be sufficiently large at
the fixed expansion point. For problems involving a single independent variable we can
usually estimate the convergence radius, using the Cauchy–Hadamard formula [1]. We
simply construct a solution spreadsheet with a sufficient number of Taylor coefficients to
use the formula for an accurate estimate. For multivariable problems we would require a
similar formula. Additional research is therefore needed to derive the formula and to place
expansion point propagation on a solid theoretical basis.
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FIG. 5. Propagation spreadsheet at last expansion point,x O = 2.55.

3. SIGNIFICANT SOLUTION EXAMPLES

One can easily build the solution spreadsheet for the example problem of Section 2.
That is true even if you had to initially construct the various formulas (no generic formulas
initially available). Without a doubt, however, there are many other problems that are more
significant and much more challenging. Our procedure solves many of them extremely
well. As an illustration, shown below are solutions for the following problems: (1) the first
problem of the biharmonic equation; (2) the nonlinear Klein–Gordon equation; and (3)
shape-from-shading viscosity problems.

3.1. The First Biharmonic Problem

In rectangular coordinates the first problem of the biharmonic equation is

∇2∇2u = (∂2/∂x2+ ∂2/∂y2)2 · u = f (x, y), (27)

whereu and its normal derivative,∂u/∂n, are prescribed on the boundaries of a rectangular
region. Several researchers have examined this problem and developed solution algorithms,
including Marinos [2] and earlier Stephenson [3]. Building on this work, we tested the
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viability of our procedure by solving the following four specific problems:

∇2∇2u = 8 (28)

∇2∇2u = 0 (29)

∇2∇2u = 8[3x2(1− x)2+ 3y2(1− y)2+ (6x2− 6x + 1)(6y2− 6y+ 1)] (30)

∇2∇2u = (2π)4[4 cos(2πx) cos(2πy)− cos(2πx)− cos(2πy)]. (31)

For the above, the exact solutions areu = x(1− x)y(1− y); u = x2− y2+ xex cosy; u =
x2(1− x)2y2(1− y)2; andu = [1− cos(2πx)][1 − cos(2πy)], respectively.

For each problem we calculated a numerical solution at several points within the closed
rectangular area, 0≤ x, y≤ 1, and then compared the results to the exact solution. We
constructed one solution algorithm to solve all four problems, one problem at a time. It
has equations for Taylor coefficients to level 16. For the first and third problems we only
needed coefficients to level 8. The coefficients between levels 9 and 16 inclusive were not
used for calculating their solutions. For the second and fourth problems we needed greater
precision. We therefore used all the coefficients to solve these two problems.

To solve (27) through (31) we started with exact values for the primary coefficients at
the four corners of the rectangular region. We then used a Taylor partial sum expansion to
calculate solutions for various points in the interior, dividing the region into quarters and
using the corner of each quarter as a fixed expansion point. Note that this is the usual, well-
known use of Taylor series expansions. It does not involve expansion point propagation. In
fact, for the first biharmonic problem, propagation produces less accuracy. Therefore, we
did not use it here.

Tables 1 and 2 show the results of our simulations. Table 1 shows the difference between
the calculated and exact solutions for the first and second problems at intervals of 0.1 in the
x andy directions (121 calculation points for each problem). Table 2 shows the difference
between calculated and exact for the third and fourth problems, again at intervals of 0.1.

For the first test problem the maximum error in the calculated solution is approximately
1.4 × 10−17. Solution accuracy therefore is at least 10 orders of magnitude better than
results reported by other researchers. The reason for this is that the exact solution,u =
x(1− x)y(1− y), is a polynomial of degree 4. Therefore, a Taylor expansion to level 4 can
solve this problem exactly, except for truncation and rounding errors. Next, for the second
problem the maximum error is 1.6× 10−10. This accuracy is 4 to 5 orders of magnitude
better than the previous studies. For the third problem maximum error is about 1.9×10−10,
which is 4 to 6 orders of magnitude better. Again, the reason for the high degree of accuracy
is that the Taylor method solves the problem exactly, except for truncation and rounding,
because the exact solution is a polynomial of degree 8. For the fourth problem the maximum
error is 7.3× 10−1. That result is only one order of magnitude better than the worst case
maximum reported in the other studies.

Note that the second and fourth test problems have trigonometric dependencies, which
produce oscillations in the primary coefficient boundary condition values. For a given partial
expansion these oscillations reduce the accuracy of the resulting calculations. Oscillations
are even more important when the expansion point is propagated. That is true because under
propagation, partial sum expansions from the first, second, and third order partial deriva-
tives of u enter into the calculations (that is, from∂u/∂x, ∂2u/∂x2, ∂3u/∂x2∂y). These
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TABLE 1

y\x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u = x ∗ (1− x) ∗ y ∗ (1− y) calculated minus exact solutions
no propagation, first biharmonic problem

0 0 0 0 0 0 0 0 0 0 0 0
0.1 0 0 0 3.5E-18 0 0 0 0 3.5E-18 1.7E-18 0
0.2 0 0 0 6.9E-18 0 0 0 0 3.5E-18 3.5E-18 0
0.3 0 3.5E-18 6.9E-18 6.9E-18 6.9E-18 6.9E-18 6.9E-18 6.9E-18 1.4E-17 6.9E-18 0
0.4 0 0 0 6.9E-18 0 0 0 0 6.9E-18 3.5E-18 0
0.5 0 0 0 6.9E-18 0 0 0 0 6.9E-18 6.9E-18 0
0.6 0 0 0 6.9E-18 0 0 0 0 6.9E-18 3.5E-18 0
0.7 0 0 0 6.9E-18 0 0 0 0 6.9E-18 6.9E-18 0
0.8 0 3.5E-18 3.5E-18 1.4E-17 6.9E-18 6.9E-18 6.9E-18 6.9E-18 1E-17 6.9E-18 0
0.9 0 1.7E-18 3.5E-18 6.9E-18 3.5E-18 6.9E-18 3.5E-18 6.9E-18 6.9E-18 5.2E-18 0
1 0 0 0 0 0 0 0 0 0 0 0

u = x ˆ2− yˆ2+ x ∗ EXP(x) ∗ (cosy) calculated minus exact solutions
no propagation, first biharmonic problem

0 0 0 0 1.1E-16 0 0 0 0 −4.4E-16 0 0
0.1 0 −4.5E-15−7.2E-15 1.6E-13 7.7E-13 2.1E-12 1.6E-10 9.4E-11 4.9E-11 6.7E-12 0
0.2 0 −2.5E-16−1.2E-14−4.1E-14−8.2E-14−7.9E-14−6.9E-12−7.9E-12−3.7E-12−1.8E-13−4.4E-16
0.3 −2.8E-17−1.7E-16−1.7E-16−6.1E-15−3.3E-14−9.4E-14−4.2E-12−1.8E-12−4.3E-13 7.4E-14−4.4E-16
0.4 0 −3E-16 −9.7E-17 1.7E-16−3.9E-15−1.9E-14−6.8E-13−9.5E-14−9.3E-15−1.3E-14 0
0.5 0 −1.1E-16−2.7E-16−1.9E-16−3.9E-16−1.7E-15−2.9E-14 1.7E-14−2.6E-14−2.7E-14 0
0.6 0 9.4E-16 4.4E-16 1.4E-15 1.8E-14 7E-14 3.8E-13 6.8E-14 1.2E-14 8E-15 0
0.7 0 −6.7E-16 7.4E-15 4.6E-14 1.6E-13 3.8E-13 2.4E-12 9.9E-13 2.4E-13−2.8E-14 0
0.8 1.1E-16 5.3E-15 1.5E-13 4E-13 5.5E-13 3.8E-13 5.7E-12 4.8E-12 2E-12 1.1E-13 0
0.9 1.1E-16−1.8E-13−1.7E-12−4.4E-12−1.1E-11−2.2E-11−7.6E-11−4.5E-11−2.4E-11−3.3E-12 0
1 0 0 0 1.1E-16 0 5.6E-17 4.9E-17 0 −2.2E-16−2.2E-16 0

TABLE 2

y\x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u = x ˆ2 ∗ (1− x)ˆ2 ∗ yˆ2 ∗ (1− y)ˆ2 calculated minus exact solutions
no propagation, first biharmonic problem

0 0 0 0 0 0 0 0 0 0 0 0
0.1 0 −7.4E-13 −1.5E-12 2E-11 8.6E-11 1.9E-10 3.1E-12 4.9E-11 8.1E-11 3.4E-11 0
0.2 0 −4.6E-14 −1.5E-12 −2.8E-12 −1.5E-12 3.4E-12 6.3E-13 1E-12 1.1E-12 3.1E-13 0
0.3 0 2E-14 −8.9E-14 −2.9E-13 −4.1E-13 −3.5E-13 3E-15 4.5E-15 4.1E-15 7.5E-16 0
0.4 0 2.6E-15 −1.4E-15 −1.3E-14 −2.3E-14 −2.6E-14 8.2E-18 1.1E-17 1E-17 4.3E-19 0
0.5 0 1.8E-16 1E-16 −3.4E-16 −8.1E-16 −1.1E-15 −4.3E-19 0 6.5E-19 3.3E-19 0
0.6 0 −5.4E-20 0 4.3E-19 4.3E-19−4.3E-19 3.9E-18 3.5E-18−4.3E-19 −5.3E-18 0
0.7 0 −1.7E-17 1.3E-17 3.5E-17 3.3E-17 2.2E-17 2.1E-15 2.2E-15 8.2E-16−1.1E-15 0
0.8 0 −2.4E-15 3.3E-14 5.2E-14 4.4E-14 2.8E-14 7.1E-13 8.4E-13 5.3E-13−3.8E-14 0
0.9 0 4.3E-12 2.3E-11 3E-11 2.4E-11 1.5E-11 9.6E-11 1.2E-10 9E-11 1.7E-11 0
1 0 0 0 0 0 0 0 0 0 0 0

u = (1− cos 2∗ Pl ∗ x) ∗ (1− cos 2∗ Pl ∗ y) calculated minus exact solutions
no propagation, first biharmonic problem

0 0 0 0 0 0 0 0 0 0 0 0
0.1 0 −2.7E-09 5E-08 2.2E-06 4.5E-05 0.000534 4.6E-05 2.2E-06 4E-08 1.4E-10 0
0.2 0 3.9E-08 2.2E-06 5E-05 0.000629 0.00527 0.000629 5E-05 2.2E-06 4E-08 0
0.3 0 2.2E-06 5E-05 0.000634 0.005369 0.033935 0.005369 0.000634 5E-05 2.2E-06 0
0.4 0 4.6E-05 0.000629 0.005369 0.034029 0.172381 0.034029 0.005369 0.000629 4.6E-05 0
0.5 0 0.000536 0.005273 0.033937 0.172381 0.732444 0.172381 0.033937 0.005273 0.000536 0
0.6 0 4.6E-05 0.000629 0.005369 0.034029 0.172381 0.034029 0.005369 0.000629 4.6E-05 0
0.7 0 2.2E-06 5E-05 0.000634 0.005369 0.033937 0.005369 0.000634 5E-05 2.2E-06 0
0.8 0 4E-08 2.2E-06 5E-05 0.000629 0.005273 0.000629 5E-05 2.2E-06 4E-08 0
0.9 0 1.4E-10 4E-08 2.2E-06 4.6E-05 0.000536 4.6E-05 2.2E-06 4E-08 1.4E-10 0
1 0 0 0 0 0 0 0 0 0 0 0
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expansions are increasing less accurate with each additional derivative because: (1) the
expansions have fewer terms with each added derivative; and (2) the oscillations become
larger in magnitude with each derivative. For these reasons the non-propagated calculations
are more accurate than the propagated ones for the second and fourth problems.

Because our procedure does not require a solution grid, calculations at one(x, y) point
do not depend on those from any other. As a result, our algorithm does not have any of
the storage problems reported in the other studies. Also, the algorithm does not need or
use iteration to solve the biharmonic equation. As a result, there are no issues or problems
concerning solution convergence. Finally, note that we can increase solution accuracy by
including more Taylor coefficients on the spreadsheet. In simulations on other problems we
constructed and used coefficients to level 32 without any trouble.

3.2. The Nonlinear Klein–Gordon Equation

In 2 dimensions the nonlinear Klein–Gordon equation has the form

∂2v(x, t)/∂t2− γ 2∂2v(x, t)/∂x2+ bv(x, t)+ g(v(x, t)) = f (x, t) = f (32)

v(x, 0) = v0(x), ∂v(x, 0)/∂t = v1(x), (33)

whereγ 2 ≥ 0 andb are real valued constants,g = g(v(x, t)) is a given nonlinear real
valued function ofv = v(x, t) and f is a known real valued function ofx andt . We tested
our procedure by solving two initial value problems defined by (32) and (33), above, and
(34) and (35), below:

γ 2 = 1, b = −2, g = 0, and f = −2(sinx)(sint)
(34)

v(x, 0) = 0 and ∂v(x, 0)/∂t = sinx

b = c2; g = −ε2σv3 and f = 0; γ, c, σ, and 0< ε ¿ 1 are constants
(35)

v(x, 0) = cos(kx) and ∂v(x, 0)/∂t = 0; k is a constant

When combined with (32) and (33), the solutions for (34) and (35) are, respectively,

v = v(x, t) = (sinx)(sint) (36)

v = v(x, t) ∼= (cosωt)(coskx)+ ε2[(9σ/32ω)t sinωt

+ (3σ/128ω2)(cosωt − cos 3ωt)] coskx

+ ε2[(3σ/128γ 2k2)(cosωt − cosλt)

+ (σ/128c2)(cosλt − cos 3ωt)] cos 3kx+ O(ε3); λ2 = 9γ 2k2+ c2. (37)

Equation (36) is an exact solution, while (37) is an approximate one, derived by perturbation
methods.

We built a single algorithm to solve both problems, one at a time. It has coefficients from
levels 0 to 8. It solved both problems with excellent precision. Table 3 shows the simulation
results. The table has a top and bottom section, each containing 8 rows of data. The top
section has the calculation results for the first problem, while the bottom one has the results
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TABLE 3

Solution of the Nonlinear Klein–Gordon Equation

Calculations created by propagating thet coordinate

t\x 0.1 0.2 0.3 0.4 0.5 0.6

v = (sinx) ∗ (sint): Differences 0.314159 8.24E-12 1.64E-11 2.44E-11 3.21E-11 3.96E-11 4.66E-11
between exact and Taylor prop. 0.628319 4.29E-09 8.54E-09 1.27E-08 1.67E-08 2.06E-08 2.43E-08
calc. sols;dt = 0.006 0.942478 1.7E-07 3.38E-07 5.03E-07 6.63E-07 8.16E-07 9.62E-07

1.256637 2.36E-06 4.7E-06 6.99E-06 9.21E-06 1.13E-05 1.34E-05
1.570796 1.86E-05 3.7E-05 5.5E-05 7.25E-05 8.92E-05 0.000105

Calculations created without propagating thet coordinate

t\x 0.1 0.2 0.3 0.4 0.5 0.6

v = (sinx) ∗ (sint) exact solution 1.570796 0.099833 0.198669 0.29552 0.389418 0.479426 0.564642
Non-propagated solution 1.570796 0.099818 0.198638 0.295474 0.389357 0.47935 0.564554
calculation Solution Error: 1.57E-05 3.12E-05 4.64E-05 6.11E-05 7.52E-05 8.86E-05
exact-Taylor non-prop.

Calculations created by propagating thet coordinate

t\x 0.1 0.2 0.3 0.4 0.5 0.6

v = (cosw ∗ t) ∗ (cosk ∗ x)+ . . . ,: 0.1 −1.2E-09 −1.1E-09 −9.8E-10 −8.2E-10 −6.4E-10 −4.7E-10
Differences between pert.- 0.2 −1.9E-08 −1.7E-08 −1.5E-08 −1.3E-08 −1E-08 −7.4E-09
derived and Taylor prop. 0.3 −8.8E-08 −8.1E-08 −7.2E-08 −6E-08 −4.8E-08 −3.6E-08
calc. sols;dt = 0.005 0.4 −2.5E-07 −2.3E-07 −2.1E-07 −1.8E-07 −1.4E-07 −1.1E-07

0.5 −5.4E-07 −5.1E-07 −4.5E-07 −3.9E-07 −3.1E-07 −2.4E-07

Calculations created without propagating thet coordinate

t\x 0.1 0.2 0.3 0.4 0.5 0.6

v = (cosw ∗ t) ∗ (cosk ∗ x)+ . . . , 0.5 0.75745 0.746053 0.727187 0.701045 0.667892 0.628064
pert. calc. Non-propagated 0.5 0.75745 0.746053 0.727188 0.701045 0.667892 0.628064
solution calculation. Diff. −4.6E-07 −4.3E-07 −3.9E-07 −3.3E-07 −2.7E-07 −2.1E-07
between pert. calc.-
Taylor non-prop.

Note. c = γ = σ = +1; ε = +0.01.

for the second problem. In both sections the first 5 rows show calculation errors for the
propagated solution at five equally spaced time intervals and selected values ofx. The last
3 rows compare the non-propagated and exact solutions at one value of time and selected
x. Looking at all the data, we can easily summarize:

(1) All of the calculations, whether by propagation or not, have small errors.
(2) For system (32), (33), and (34) the calculation errors range from 10−12, at t =

0.314159, to 10−4 for t = π/2 (∼= 1.570796). The propagated and non-propagated calcu-
lations have comparable errors, with the non-propagated calculations slightly better (com-
paring rows 5 and 8 in the top section of Table 3).

(3) For system (32), (33), and (35), Table 3 shows the differences between the pertur-
bation and Taylor calculations. Differences range from 10−10 to 10−7. The propagated and
non-propagated Taylor calculations are almost identical (rows 5 and 8 in the bottom section
of Table 3).

(4) In comparing to earlier research by Deeba and Khuri [4], our results are more
accurate.

3.3. Shape-from-Shading Viscosity Problems

For our last set of simulations we examined shape-from-shading viscosity problems.
Therefore, letÄ be an area defined on thex, y plane together with its boundary,∂Ä. The
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applicable 2D partial derivative equations are from Hamilton–Jacobi theory:

I [1+ (∂u/∂x)2+ (∂u/∂y)2]0.5− α(∂u/∂x)− β(∂u/∂y)− γ = 0 (38)

u = 0 everywhere on∂Ä. (39)

α, β, γ are non-negative constants such thatα2 + β2 + γ 2 = 1 and I = I (x, y). Under
certain assumptions forI andu the above equations have unique solutions foru = u(x, y).
Each one defines a surface under illumination from a distant light source.I = I (x, y) is
the brightness value on the surface resulting from the illumination. Equations (38) and
(39) therefore represent equations for recovering a surface shape, based on knowing the
brightness on its surface. Please see Rouy and Tourin [5] for the mathematical theory
associated with this equation and its application to shape-from-shading problems.

Consider now the following functions forI = I (x, y), defined on the unit square, 0≤ x,
y≤ 1, andu defined at points of maximum illumination brightness:

I = [1+ (16y(1− y)(1− 2x))2+ (16x(1− x)(1− 2y))2]−0.5

(40)
u(0.5, 0.5) = 1; vertical lighting:α = β = 0 andγ = 1

I = [1+ (2π sin(2πy) cos(2πx))2+ (2π sin(2πx) cos(2πy))2]−0.5

u(0.25, 02.5) = u(0.75, 0.75) = 1

u(0.25, 0.75) = u(0.75, 0.25) = −1 (41)

u(0.5, 0.5) = 0; vertical lighting:α = β = 0 andγ = 1.

The exact solutions for the above are respectively

u = u(x, y) = +16(x2− x)(y2− y) (42)

u = u(x, y) = + sin(2πx) sin(2πy). (43)

Equation (42) represents a parabolic surface, while (43) is a sinusoidal surface.
We built an algorithm with coefficients from levels 0 to 16 to solve (38) through (41). In

the algorithm we used Taylor square roots to convert the Taylor equivalent of (38) into a
quadratic formula solution for the coefficients ofu, x = ∂u/∂x. We then Taylor integrated
the u, x coefficients to obtain coefficients foru. Finally, we calculated solution values at
selectedx, y points, using partial sum expansions without propagation (the non-propagated
calculations were more accurate). We selected various points on∂Ä for the expansion
points.

Because we solved for the coefficients ofu, x directly and then Taylor integrated, our
algorithm appears to be more efficient than the approach used in [5]. In particular, we did
not have to impose a solution at various points, such as on∂Ä, or at points of maximum
illumination. Therefore, we did not have the solution discontinuities or jumps that were
noted in [5]. Our algorithm only required that we determine the sign on the first nonzero
square root coefficient at each expansion point. We did that by selecting the sign at the first
point, (0, 0), and then calculating its value,+1, 0, or−1, at the other expansion points,
using Taylor partial sums. We selected at (0, 0), using our knowledge of the exact solution.
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TABLE 4

y values

x/y 0 0.1 0.2 0.3 0.4 0.5 0.6

Calculation errors for parabola reconstruction: vertical lighting
0 0 0 0 0 0 0 0
0.1 0 0 2.8E-17 0 0 −5.6E-17 0
0.2 0 −5.4E-15 5.6E-17 0 −1.1E-16 0 −1.1E-16
0.3 0 −2.8E-12 2.3E-15 −1.1E-16 −1.1E-16 −1.1E-16 −1.1E-16
0.4 0 −2.6E-10 1.5E-13 2.2E-16 −1.1E-16 0 −1.1E-16
0.5 0 −8.8E-09 4.4E-12 4.8E-15 2.2E-16 0 2.2E-16
0.6 0 −2.6E-10 1.5E-13 2.2E-16 −1.1E-16 0 −1.1E-16
0.7 0 −2.8E-12 2.3E-15 −1.1E-16 −1.1E-16 −1.1E-16 −1.1E-16
0.8 0 −5.4E-15 −5.6E-17 −1.1E-16 −2.2E-16 −1.1E-16 −2.2E-16
0.9 0 −8.3E-17 −1.4E-16 −2.2E-16 −2.8E-16 −2.8E-16 −2.8E-16
1 0 0 0 0 0 0 0

Calculation errors for sinusoid reconstruction: vertical lighting
0 0 0 0 0 0 0 0
0.1 0 4.4E-11 7.2E-11 7.2E-11 4.4E-11 −1.3E-13 −4.4E-11
0.2 0 9E-08 1.5E-07 1.5E-07 9E-08 2.4E-11 −9E-08
0.3 0 7.7E-06 1.2E-05 1.2E-05 7.7E-06 1E-08 −7.7E-06
0.4 0 0.000179 0.000289 0.000289 0.000179 7.8E-07−0.00018
0.5 0 −0.00204 −0.00329 −0.00329 −0.00204 −2.2E-05 −0.002036
0.6 0 −0.00018 −0.00029 −0.00029 −0.00018 −7.8E-07 0.000179
0.7 0 −7.7E-06 −1.2E-05 −1.2E-05 −7.7E-06 −1E-08 7.7E-06
0.8 0 −9E-08 −1.5E-07 −1.5E-07 −9E-08 −2.4E-11 9E-08
0.9 0 −4.4E-11 −7.2E-11 −7.2E-11 −4.4E-11 1.3E-13 4.4E-11
1 0 0 0 0 0 0 0

Table 4 and Figs. 6 and 7 show the results of our simulations. In the tables we list solution
errors at selected values ofx andy for (40) and (41). As can be seen the errors are extremely
small for the first problem, (40). They range from 10−9 to 10−17 in magnitude. For the second
problem we again see the effect of initial value oscillations on the accuracy. The calculation
errors, although still acceptable, are quite a bit larger. They range from 10−3 to 10−13 in
magnitude. Figures 6 and 7 present the shapes reconstructed from (40) and (41). For both
simulations the maximum errors are much smaller than those reported in [5].

FIG. 6. Parabola reconstruction under vertical lighting.
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FIG. 7. Sinusoid reconstruction under vertical lighting.

4. SUMMARY AND CONCLUSIONS

In this paper we demonstrated the ability of a new procedure to solve a variety of mathe-
matical and physical problems of interest. Such problems included, but were not limited to,
the biharmonic equation and shape-from-shading computations. In all cases, for analytical
points only, calculation accuracies were comparable, and most often substantially superior,
to accuracies reported in other research. We also demonstrated other key features of the
procedure, such as: (1) the ability to solve several related initial value and/or boundary
condition problems, using one algorithm; (2) the fact that the independent variable space
does not require discretization, which has positive repercussions on storage requirements;
(3) the use of generic formulas to build and create solution algorithms that are specific to
the problems of interest; and (4) solution accuracies that often are improved by propagat-
ing the Taylor expansion points. Additionally, the procedure works, using any given set of
independent coordinates for any problem.

In essence the procedure is a machine for numerically generating analytical solutions to
integral and differential problems. It does so in Taylor coefficient space. Input an arbitrary set
of Taylor coefficients. Dial in the specific mathematical (Taylor) operations to be performed
on the coefficients. The machine outputs the resulting solution coefficients that satisfy those
operations.

Our procedure does have a few problem areas. As presented here, the most important
of these are: (1) it cannot calculate solutions at non-analytical points, such discontinuities
and singularities; (2) calculation speeds are not competitive to those achieved by many
other techniques; and (3) additional research is required to provide a theoretical basis for
expansion point propagation and to develop tools for determining the radius of convergence
for some calculations. Probably, most of these shortcomings can be eliminated. For ex-
ample, it may be possible to create a similar procedure, using Laurent series coefficients,
for situations where the solution is singular at one or more expansion points. Similarly,
computational speeds should significantly increase with the creation and use of specially
built software, operating similar to a modern commercial spreadsheet, but not including
any of the unnecessary overhead. We have some definite thoughts on how that might be
implemented. Finally, research should be forthcoming and fruitful because of the significant
and undeniable capabilities demonstrated in the procedure.

In that last regard, perhaps we can best summarize by alluding to the situation involving
the first problem of the biharmonic equation. In solving that problem, Marinos [2] noted



       

SOLVING INTEGRAL EQUATIONS 311

that Stephenson’s solution method [3] had several weak points. These included an increased
number of unknowns, which led to increased memory requirements, complicated equations
and, when iteration was used, slow convergence or sometimes no convergence at all. Marinos
concluded that these disadvantages may be necessary to achieve the high accuracy that the
method produced. Based on our research, however, summarized in Subsection 3.1, that
conclusion is no longer valid. In retrospect it is interesting that we could achieve the high
accuracy without the disadvantages in that simulation, and in the others, using Taylor series
mathematics. As is well known, Taylor series are rarely used to solve differential or integral
equations. But as shown, Taylor solutions are very capable. To exploit that capability we
simply needed a method to quickly and easily create, store, and manipulate a sufficient
number of Taylor components to solve the equations to the desired level of accuracy.
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